Derivatives of Trigonometric Functions
www.personal.psu.edu › Notes-Derivatives_of_Trigex. Find the derivative of csc x. x x x x x dx d dx d x dx x d x dx d 2 sin2 sin 0 1cos (sin ) sin 1 1 sin sin 1 csc ⋅ − ⋅ = − = = x x x x x x x csc cot sin cos sin 1 sin cos 2 =− ⋅ =− − = Therefore, x x x dx d csc =−csc cot The complete list of derivatives of trigonometric functions: 1. x x dx d sin =cos 2. x x dx d cos =−sin 3. x x dx d tan =sec2 4. x x x dx d sec =sec tan 5. x x dx
Derivatives of Trigonometric Functions
www.ocf.berkeley.edu › ~reinholz › edThis is perhaps the most commonly used and most useful of the trigonometric identities. If we divide both sides of the equation by cos2(θ) we find 1+tan2(θ) = sec2(θ) If we divide both sides of the equation by sin2(θ) we find 1+cot2(θ) = csc2(θ) Keeping these identities in mind, we will look at the derivatives of the trigonometric functions.
3.5 Derivatives of Trigonometric Functions - Calculus Volume ...
openstax.org › books › calculus-volume-1d d x sin x = lim h → 0 sin (x + h) − sin x h Apply the definition of the derivative. = lim h → 0 sin x cos h + cos x sin h − sin x h Use trig identity for the sine of the sum of two angles. = lim h → 0 (sin x cos h − sin x h + cos x sin h h) Regroup. = lim h → 0 (sin x (cos h − 1 h) + cos x (sin h h)) Factor out sin x and cos x. = sin x · 0 + cos x · 1 Apply trig limit formulas. = cos x Simplify. d d x sin x = lim h → 0 sin (x + h) − sin x h Apply the definition of the ...