[1606.05908v1] Tutorial on Variational Autoencoders
arxiv.org › abs › 1606Jun 19, 2016 · In just three years, Variational Autoencoders (VAEs) have emerged as one of the most popular approaches to unsupervised learning of complicated distributions. VAEs are appealing because they are built on top of standard function approximators (neural networks), and can be trained with stochastic gradient descent. VAEs have already shown promise in generating many kinds of complicated data ...
Tutorial #5: variational autoencoders - Borealis AI
www.borealisai.com › en › blogTutorial #5: variational autoencoders. The goal of the variational autoencoder (VAE) is to learn a probability distribution P r(x) P r ( x) over a multi-dimensional variable x x. There are two main reasons for modelling distributions. First, we might want to draw samples (generate) from the distribution to create new plausible values of x x.