Tutorial #5: variational autoencoders
www.borealisai.com › en › blogTutorial #5: variational autoencoders. The goal of the variational autoencoder (VAE) is to learn a probability distribution P r(x) P r ( x) over a multi-dimensional variable x x. There are two main reasons for modelling distributions. First, we might want to draw samples (generate) from the distribution to create new plausible values of x x.
Variational AutoEncoders - GeeksforGeeks
www.geeksforgeeks.org › variational-autoencodersJul 17, 2020 · Variational autoencoder is different from autoencoder in a way such that it provides a statistic manner for describing the samples of the dataset in latent space. Therefore, in variational autoencoder, the encoder outputs a probability distribution in the bottleneck layer instead of a single output value. Mathematics behind variational autoencoder: