Text Classification using Attention Mechanism in Keras ...
androidkt.com › text-classification-usingDec 10, 2018 · class Attention(tf.keras.Model): def __init__(self, units): super(Attention, self).__init__() self.W1 = tf.keras.layers.Dense(units) self.W2 = tf.keras.layers.Dense(units) self.V = tf.keras.layers.Dense(1) def call(self, features, hidden): hidden_with_time_axis = tf.expand_dims(hidden, 1) score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis)) attention_weights = tf.nn.softmax(self.V(score), axis=1) context_vector = attention_weights * features context_vector = tf.reduce_sum ...
python - Create an LSTM layer with Attention in Keras for ...
stackoverflow.com › questions › 63060083Dec 14, 2020 · self.b=self.add_weight(name="att_bias", shape=(input_shape[-2], units), initializer="zeros") super(peel_the_layer,self).build(input_shape) def call(self, x): ##x is the input tensor..each word that needs to be attended to ##Below is the main processing done during training ##K is the Keras Backend import e = K.tanh(K.dot(x,self.w)+self.b) a = K.softmax(e, axis=1) output = x*a ##return the ouputs. 'a' is the set of attention weights ##the second variable is the 'attention adjusted o/p state ...