MultiHeadAttention layer - Keras
keras.io › api › layersMultiHeadAttention layer. This is an implementation of multi-headed attention as described in the paper "Attention is all you Need" (Vaswani et al., 2017). If query, key, value are the same, then this is self-attention. Each timestep in query attends to the corresponding sequence in key, and returns a fixed-width vector.
Attention layer - Keras
keras.io › api › layersAttention class. tf.keras.layers.Attention(use_scale=False, **kwargs) Dot-product attention layer, a.k.a. Luong-style attention. Inputs are query tensor of shape [batch_size, Tq, dim], value tensor of shape [batch_size, Tv, dim] and key tensor of shape [batch_size, Tv, dim]. The calculation follows the steps:
keras-self-attention - PyPI
https://pypi.org/project/keras-self-attention15.06.2021 · Keras Self-Attention [中文|English] Attention mechanism for processing sequential data that considers the context for each timestamp. Install pip install keras-self-attention Usage Basic. By default, the attention layer uses additive attention and considers the whole context while calculating the relevance.