[2003.05991] Autoencoders - arXiv
arxiv.org › abs › 2003Mar 12, 2020 · Abstract:An autoencoder is a specific type of a neural network, which is mainly designed to encode the input into a compressed and meaningful representation, and then decode it back such that the reconstructed input is similar as possible to the original one. This chapter surveys the different types of
Autoencoder - Wikipedia
https://en.wikipedia.org/wiki/AutoencoderAn autoencoder has two main parts: an encoder that maps the input into the code, and a decoder that maps the code to a reconstruction of the input. The simplest way to perform the copying task perfectly would be to duplicate the signal. Instead, autoencoders are typically forced to reconstruct the input approximately, preserving only the most relevant aspects of the data in the co…
Guided Variational Autoencoder for Disentanglement Learning
openaccess.thecvf.com › content_CVPR_2020 › papersGuided Variational Autoencoder for Disentanglement Learning Zheng Ding∗,1,2, Yifan Xu∗,2, Weijian Xu2, Gaurav Parmar2, Yang Yang3, Max Welling3,4, Zhuowen Tu2 1Tsinghua University 2UC San Diego 3Qualcomm, Inc. 4University of Amsterdam Abstract We propose an algorithm, guided variational autoen-coder (Guided-VAE), that is able to learn a ...