Variational Autoencoder for Deep Learning of Images ...
https://proceedings.neurips.cc/paper/2016/file/eb86d510361fc23b59f…Variational Autoencoder for Deep Learning of Images, Labels and Captions Yunchen Pu y, Zhe Gan , Ricardo Henao , Xin Yuanz, Chunyuan Li y, Andrew Stevens and Lawrence Cariny yDepartment of Electrical and Computer Engineering, Duke University {yp42, zg27, r.henao, cl319, ajs104, lcarin}@duke.edu
Autoencoder - Wikipedia
https://en.wikipedia.org/wiki/AutoencoderAn autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning). The encoding is validated and refined by attempting to regenerate the input from the encoding. The autoencoder learns a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore insignificant data (“…
Guided Variational Autoencoder for Disentanglement Learning
https://openaccess.thecvf.com/content_CVPR_2020/papers/Ding_Gui…Guided Variational Autoencoder for Disentanglement Learning Zheng Ding∗,1,2, Yifan Xu∗,2, Weijian Xu2, Gaurav Parmar2, Yang Yang3, Max Welling3,4, Zhuowen Tu2 1Tsinghua University 2UC San Diego 3Qualcomm, Inc. 4University of Amsterdam Abstract We propose an algorithm, guided variational autoen-coder (Guided-VAE), that is able to learn a controllable