[1606.05908v1] Tutorial on Variational Autoencoders
arxiv.org › abs › 1606Jun 19, 2016 · In just three years, Variational Autoencoders (VAEs) have emerged as one of the most popular approaches to unsupervised learning of complicated distributions. VAEs are appealing because they are built on top of standard function approximators (neural networks), and can be trained with stochastic gradient descent.