Understanding pos_weight argument in BCEWithLogitsLoss
stackoverflow.com › questions › 66660354Mar 16, 2021 · In pseudo code this looks like: l = [100, 10, 5, 15] lcm = LCM (l) # 300 weights = lcm / l # weights = [3, 30, 60, 20] weights = weights / l [0] # weights = [1, 10, 20, 6.6667] positive_weights = weights [1:] # [10, 20, 6.66667] criterion = nn.BCEWithLogitsLoss (pos_weight=positive_weights)
PyTorch学习笔记——二分类交叉熵损失函数 - 知乎
https://zhuanlan.zhihu.com/p/59800597类定义如下 torch.nn.BCEWithLogitsLoss ( weight=None, size_average=None, reduction="mean", pos_weight=None, ) 用N表示样本数量, 表示预测第n个样本为正例的 得分 , 表示第n个样本的标签, 表示sigmoid函数,则: 这个类将Sigmoid ()和BCELoss ()整合起来,比 纯粹使用BCELoss ()+Sigmoid ()更数值稳定。 This loss combines a Sigmoid layer and the BCELoss in one single …
How to calculate unbalanced weights for BCEWithLogitsLoss in ...
stackoverflow.com › questions › 57021620The PyTorch documentation for BCEWithLogitsLoss recommends the pos_weight to be a ratio between the negative counts and the positive counts for each class. So, if len(dataset) is 1000, element 0 of your multihot encoding has 100 positive counts, then element 0 of the pos_weights_vector should be 900/100 = 9. That means that the binary crossent loss will behave as if the dataset contains 900 positive examples instead of 100.
BCEWithLogitsLoss — PyTorch 1.10.1 documentation
pytorch.org › torchBCEWithLogitsLoss (weight = None, size_average = None, reduce = None, reduction = 'mean', pos_weight = None) [source] ¶ This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.