BCELoss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableOur solution is that BCELoss clamps its log function outputs to be greater than or equal to -100. This way, we can always have a finite loss value and a linear backward method. weight ( Tensor, optional) – a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size nbatch.
BCEWithLogitsLoss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableBCEWithLogitsLoss. class torch.nn.BCEWithLogitsLoss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None) [source] This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one ...