Probabilistic losses - Keras
https://keras.io/api/losses/probabilistic_lossesBinaryCrossentropy class tf.keras.losses.BinaryCrossentropy( from_logits=False, label_smoothing=0.0, axis=-1, reduction="auto", name="binary_crossentropy", ) Computes the cross-entropy loss between true labels and predicted labels. Use this cross-entropy loss for binary (0 or 1) classification applications.
Cross entropy - Wikipedia
https://en.wikipedia.org/wiki/Cross_entropyCross-entropy can be used to define a loss function in machine learning and optimization. The true probability is the true label, and the given distribution is the predicted value of the current model. More specifically, consider logistic regression, which (among other things) can be used to classify observations into two possible classes (often simply labelled and ). The output of the model for a given observation, given a vector of input features , can be interpreted as a probability, which ser…