Chebyshev polynomials - Wikipedia
https://en.wikipedia.org/wiki/Chebyshev_polynomialsThe Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined several equivalent ways; in this article the polynomials are defined by starting with trigonometric functions: The Chebyshev polynomials of the first kind are given by Similarly, define the Chebyshev polynomials of the second kind as
5.8 Chebyshev Approximation
www.it.uom.gr › teaching › linearalgebra5.8 Chebyshev Approximation The Chebyshev polynomial of degree n is denoted Tn(x), and is given by the explicit formula Tn(x)=cos(n arccos x)(5.8.1) This may look trigonometric at first glance (and there is in fact a close relation between the Chebyshev polynomials and the discrete Fourier transform); however