8.3 - Chebyshev Polynomials
www3.nd.edu › ~zxu2 › acms40390F11Chebyshev polynomials are orthogonal w.r.t. weight function w(x) = p1 1 x2. Namely, Z 1 21 T n(x)T m(x) p 1 x2 dx= ˆ 0 if m6= n ˇ if n= m for each n 1 (1) Theorem (Roots of Chebyshev polynomials) The roots of T n(x) of degree n 1 has nsimple zeros in [ 1;1] at x k= cos 2k 1 2n ˇ; for each k= 1;2 n: Moreover, T n(x) assumes its absolute ...