Chebyshev Interpolation
www.maa.org › sites › defaultThe Chebyshev Polynomials(of the first kind) are defined by as (1) They are orthogonal with respect to the weight on the interval . Intervals other than are easily handled by the change of variables . Although not immediately evident from definition (1), Tnis a polynomial of degree n. From definition (1) we have that and . Exercise.
Wahl der Interpolationsknoten - Dorn
www.dorn.org/uni/sls/kap06/f07_09.htmDie Berechnung einer Tschebyscheff-Darstellung von ist sehr effizient durch Auswertung von ( ) bzw. ( ) möglich. Wenn man sich für die Funktionsapproximation durch Interpolation an den Tschebyscheff-Knoten entschieden hat, bleibt noch die Frage nach der Wahl der Anzahl der Interpolationsknoten und damit verbunden des Polynomgrades d.
Chebyshev polynomials - Wikipedia
https://en.wikipedia.org/wiki/Chebyshev_polynomialsThe Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined several equivalent ways; in this article the polynomials are defined by starting with trigonometric functions: The Chebyshev polynomials of the first kind are given by Similarly, define the Chebyshev polynomials of the second kind as