Chebyshev polynomials - Wikipedia
https://en.wikipedia.org/wiki/Chebyshev_polynomialsThe Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined several ways that have the same end result; in this article the polynomials are defined by starting with trigonometric functions: The Chebyshev polynomials of the first kind are given by Similarly, define the Chebyshev polynomials of the second kind as
Chebyshev's inequality - Wikipedia
https://en.wikipedia.org/wiki/Chebyshev's_inequalityIn probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) guarantees that, for a wide class of probability distributions, no more than a certain fraction of values can be more than a certain distance from the mean. Specifically, no more than 1/k of the distribution's values can be k or more standard deviationsaway from the mean (or equivalently, over 1 − 1/k of the distribution's values are less than k standard deviations away from the mean)…
Note on Chebyshev Regression - Paul Klein
paulklein.ca › newsite › teaching5 Generalization: Chebyshev Regression The Chebyshev collocation method is known to be easily extended to the case where more points than the maximum order of Chebyshev polynomials are used. Since we will have more conditions than the number of coe–cients, the method is called Chebyshev regression. Conversely, Chebyshev collocation