tf.keras.layers.Conv2D | TensorFlow Core v2.7.0
www.tensorflow.org › python › tfpix2pix: Image-to-image translation with a conditional GAN. This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.
Conv2D layer - Keras
https://keras.io/api/layers/convolution_layers/convolution2dConv2D class. 2D convolution layer (e.g. spatial convolution over images). This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.
Keras.Conv2D Class - GeeksforGeeks
https://www.geeksforgeeks.org/keras-conv2d-class26.06.2019 · Keras Conv2D is a 2D Convolution Layer, this layer creates a convolution kernel that is wind with layers input which helps produce a tensor of outputs.. Kernel: In image processing kernel is a convolution matrix or masks which can be used for blurring, sharpening, embossing, edge detection, and more by doing a convolution between a kernel and an image.
Conv2D layer - Keras: the Python deep learning API
keras.io › api › layersConv2D class. 2D convolution layer (e.g. spatial convolution over images). This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. If use_bias is True, a bias vector is created and added to the outputs. Finally, if activation is not None, it is applied to the outputs as well.
Conv2d — PyTorch 1.10.1 documentation
pytorch.org › docs › stable~Conv2d.bias – the learnable bias of the module of shape (out_channels). If bias is True , then the values of these weights are sampled from U ( − k , k ) \mathcal{U}(-\sqrt{k}, \sqrt{k}) U ( − k , k ) where k = g r o u p s C in ∗ ∏ i = 0 1 kernel_size [ i ] k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]} k = C ...
Conv2d — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d~Conv2d.bias – the learnable bias of the module of shape (out_channels). If bias is True , then the values of these weights are sampled from U ( − k , k ) \mathcal{U}(-\sqrt{k}, \sqrt{k}) U ( − k , k ) where k = g r o u p s C in ∗ ∏ i = 0 1 kernel_size [ i ] k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]} k = C in ∗ ∏ i = 0 1 kernel_size [ i ] g ro u p s