Building Autoencoders in Keras
blog.keras.io › building-autoencoders-in-kerasMay 14, 2016 · The encoder and decoder will be chosen to be parametric functions (typically neural networks), and to be differentiable with respect to the distance function, so the parameters of the encoding/decoding functions can be optimize to minimize the reconstruction loss, using Stochastic Gradient Descent.
Building Autoencoders in Keras
https://blog.keras.io/building-autoencoders-in-keras.html14.05.2016 · encoder = keras.Model(input_img, encoded) encoded_imgs = encoder.predict(x_test) n = 10 plt.figure(figsize=(20, 8)) for i in range(1, n + 1): ax = plt.subplot(1, n, i) plt.imshow(encoded_imgs[i].reshape( (4, 4 * 8)).T) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() Application to image denoising