Fermat’s Little Theorem
people.math.umass.edu › Fermat_sLittleTheoremTheorem 2 (Euler’s Theorem). Let m be an integer with m > 1. Then for each integer a that is relatively prime to m, aφ(m) ≡ 1 (mod m). We will not prove Euler’s Theorem here, because we do not need it. Fermat’s Little Theorem is a special case of Euler’s Theorem because, for a prime p, Euler’s phi function takes the value φ(p) = p ...
Fermat’s Little Theorem Solutions
www.math.cmu.edu › ~cargue › armlSep 27, 2015 · By Fermat’s Little Theorem, 36 1 mod 7. Thus, 331 31 3 mod 7. 2. Find 235 mod 7. [Solution: 235 4 mod 7] By Fermat’s Little Theorem, 26 1 mod 7. Thus, 235 25 32 4 mod 7. 3. Find 128129 mod 17. [Solution: 128129 9 mod 17] By Fermat’s Little Theorem, 128 16 9 1 mod 17. Thus, 128129 91 9 mod 17. 4.