使用TF2与Keras实现经典GNN的开源库——Spektral - 知乎
https://zhuanlan.zhihu.com/p/138234592搭建 GCN 的方式与搭建其他 Keras 模型没有任何区别,只是需要注意 GraphConv 层的输入为 X 与 A: X_in = Input (shape= (F, )) A_in = Input ( (N, ), sparse=*True*) X_1 = GraphConv (16, 'relu') ( [X_in, A_in]) X_1 = Dropout (0.5) (X_1) X_2 = GraphConv (n_classes, 'softmax') ( [X_1, A_in]) model = Model (inputs= [X_in, A_in], outputs=X_2) 至此,我们已经完成了 GCN 的搭建,是不是非常简 …
keras-gcn · PyPI
https://pypi.org/project/keras-gcn16.05.2020 · Install pip install keras-gcn Usage GraphConv import keras from keras_gru import GraphConv DATA_DIM = 3 data_layer = keras.layers.Input(shape=(None, DATA_DIM)) edge_layer = keras.layers.Input(shape=(None, None)) conv_layer = GraphConv( units=32, step_num=1, ) ( [data_layer, edge_layer])
Spektral
https://graphneural.networkSpektral: Graph Neural Networks in TensorFlow 2 and Keras. ... Graph Convolutional Networks (GCN) · Chebyshev convolutions · GraphSAGE · ARMA convolutions ...