Math 241: Solving the heat equation
www2.math.upenn.edu › solving_the_heat_eqnPolynomial solutions So the heat equation tells us: p 1 = kp00 0; p 2 = k 2 p00 1 = k2 2 p0000 0; p 3 = k 3 p00 2 = k3 3! p(6) 0; :::; p n = kn n! p(2n) This process will stop if p 0 is a polynomial, and we’ll get a polynomial solution of the heat equation whose x-degree is twice its t-degree: u(x;t) = p 0(x) + kt 1! p00 0 + k2t2 2! p0000 0 + + kntn n! p(2n) + :
Heat equation - Wikipedia
https://en.wikipedia.org/wiki/Heat_equationIn mathematics, if given an open subset U of R and a subinterval I of R, one says that a function u : U × I → R is a solution of the heat equation if where (x1, …, xn, t) denotes a general point of the domain. It is typical to refer to t as "time" and x1, …, xn as "spatial variables," even in abstract contexts where these phrases fail to have their intuitive meaning. The collection of spatial variables is often referred to simply as x. For any give…
The heat equation
edoras.sdsu.edu › ~mthomas › f173 Basic concepts needed to solve the heat equation It is almost time for us to solve the heat equation. However, before we do that, we will have to look at some other things first. 3.1 Linear operators and linear equations A linear operator is some operator L for which L(c 1u 1 +c 2u 2) = c 1L(u 1)+c 2L(u 2), (3.1) where c 1 and c 2 are constants. For example, the heat operator
2 Heat Equation - Stanford University
web.stanford.edu › class › math220binvolves looking for a solution of a particular form. In particular, we look for a solution of the form u(x;t) = X(x)T(t) for functions X, T to be determined. Suppose we can find a solution of (2.2) of this form. Plugging a function u = XT into the heat equation, we arrive at the equation XT0 ¡kX00T = 0: Dividing this equation by kXT, we have T0 kT = X00 X = ¡‚: