Chebyshev polynomials - Wikipedia
https://en.wikipedia.org/wiki/Chebyshev_polynomialsThe Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as () and ().They can be defined several equivalent ways; in this article the polynomials are defined by starting with trigonometric functions: . The Chebyshev polynomials of the first kind are given by () = ().Similarly, define the Chebyshev polynomials of the second kind …
Chebyshev nodes - Wikipedia
en.wikipedia.org › wiki › Chebyshev_nodesChebyshev nodes. The Chebyshev nodes are equivalent to the x coordinates of n equally spaced points on a unit semicircle (here, n =10). In numerical analysis, Chebyshev nodes are specific real algebraic numbers, namely the roots of the Chebyshev polynomials of the first kind.
Chebyshev nodes - Wikipedia
https://en.wikipedia.org/wiki/Chebyshev_nodesIn numerical analysis, Chebyshev nodes are specific real algebraic numbers, namely the roots of the Chebyshev polynomials of the first kind. They are often used as nodes in polynomial interpolation because the resulting interpolation polynomial minimizes the effect of Runge's phenomenon.