Attention for image classification - PyTorch Forums
discuss.pytorch.org › t › attention-for-imageOct 02, 2019 · for an input image of size, 3x28x28 inp = torch.randn(1, 3, 28, 28) x = nn.MultiheadAttention(28, 2) x(inp[0], torch.randn(28, 28), torch.randn(28, 28))[0].shape gives torch.Size([3, 28, 28]) while x(inp[0], torch.randn(28, 28), torch.randn(28, 28))[1].shape gives torch.Size([28, 3, 1]) what is the correct way of using MultiHeadAttention for images? does this multiheadattention work something ...
Attention for image classification - PyTorch Forums
https://discuss.pytorch.org/t/attention-for-image-classification/5735402.10.2019 · Attention for image classification - PyTorch Forums for an input image of size, 3x28x28 inp = torch.randn(1, 3, 28, 28) x = nn.MultiheadAttention(28, 2) x(inp[0], torch.randn(28, 28), torch.randn(28, 28))[0].shape gives torch.Size([3, 28, 28]) while x(inp[0], torch.r…
MultiheadAttention — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.htmlMultiheadAttention. class torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None) [source] Allows the model to jointly attend to information from different representation subspaces. See Attention Is All You Need.