torch.nn — PyTorch 1.10.1 documentation
pytorch.org › docs › stablenn.ConvTranspose3d. Applies a 3D transposed convolution operator over an input image composed of several input planes. nn.LazyConv1d. A torch.nn.Conv1d module with lazy initialization of the in_channels argument of the Conv1d that is inferred from the input.size (1). nn.LazyConv2d.
Transformer — PyTorch 1.10.1 documentation
pytorch.org › docs › stableTransformer. A transformer model. User is able to modify the attributes as needed. The architecture is based on the paper “Attention Is All You Need”. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
MultiheadAttention — PyTorch 1.10.1 documentation
pytorch.org › torchLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
An implementation of Performer, a linear attention-based ...
pythonawesome.com › an-implementation-of-performerAug 28, 2021 · Standalone self-attention layer with linear complexity in respect to sequence length, for replacing trained full-attention transformer self-attention layers. import torch from performer_pytorch import SelfAttention attn = SelfAttention( dim = 512, heads = 8, causal = False, ).cuda() x = torch.randn(1, 1024, 512).cuda() attn(x) # (1, 1024, 512) Python.
MultiheadAttention — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.htmlMultiheadAttention. class torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None) [source] Allows the model to jointly attend to information from different representation subspaces. See Attention Is All You Need.