MultiheadAttention — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.htmlMultiheadAttention. class torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None) [source] Allows the model to jointly attend to information from different representation subspaces. See Attention Is All You Need.
Bi-LSTM with Attention (PyTorch 实现) - 简书
https://www.jianshu.com/p/0b298c66ce2e15.05.2021 · Bi-LSTM with Attention (PyTorch 实现) 这里用Bi-LSTM + Attention机制实现一个简单的句子分类任务。 先导包. import torch import numpy as np import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import matplotlib.pyplot as plt import torch.utils.data as Data device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')