The Inverse Laplace Transform
howellkb.uah.edu › DEtext › Part4Theorem 26.2 (linearity of the inverse Laplace transform) The inverse Laplace transform transform is linear. That is, L−1[c 1F 1(s)+c 2F 2(s)+···+c n F n(s)] = c 1L−1[F 1(s)] + c 2L[F 2(s)] + ··· + c nL[F n(s)] when each c k is a constant and each F k is a function having an inverse Laplace transform.
Inverse Laplace transform - Wikipedia
https://en.wikipedia.org/wiki/Inverse_Laplace_transformAn integral formula for the inverse Laplace transform, called the Mellin's inverse formula, the Bromwich integral, or the Fourier–Mellin integral, is given by the line integral: where the integration is done along the vertical line Re(s) = γ in the complex plane such that γ is greater than the real part of all singularities of F(s) and F(s) is bounded on the line, for example if contour path is in the region of convergence. If all singularities are in the left half-plane, or F(s) i…