SGD - Keras
https://keras.io/api/optimizers/sgdArguments. learning_rate: A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use.The learning rate. Defaults to 0.01. momentum: float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations.
最適化 - Keras Documentation
https://keras.io/ja/optimizersKerasのオプティマイザの共通パラメータ. clipnormとclipvalueはすべての最適化法についてgradient clippingを制御するために使われます:. from keras import optimizers # All parameter gradients will be clipped to # a maximum norm of 1. sgd = optimizers.SGD(lr=0.01, clipnorm=1.)
tf.keras.optimizers.SGD | TensorFlow Core v2.7.0
www.tensorflow.org › tf › kerasA Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to 0.01. momentum. float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations.
Optimizers - Keras
https://keras.io/api/optimizersExponentialDecay (initial_learning_rate = 1e-2, decay_steps = 10000, decay_rate = 0.9) optimizer = keras. optimizers. SGD ( learning_rate = lr_schedule ) Check out the learning rate schedule API documentation for a list of available schedules.
SGD - Keras
keras.io › api › optimizerstf. keras. optimizers. SGD ... A Tensor, floating point value, or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule, or a callable that takes no ...
Optimizers - Keras
keras.io › api › optimizersExponentialDecay (initial_learning_rate = 1e-2, decay_steps = 10000, decay_rate = 0.9) optimizer = keras. optimizers. SGD ( learning_rate = lr_schedule ) Check out the learning rate schedule API documentation for a list of available schedules.