MultiLabelMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torchMultiLabelMarginLoss — PyTorch 1.11.0 documentation MultiLabelMarginLoss class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input x x (a 2D mini-batch Tensor ) and output
SoftMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torchSoftMarginLoss — PyTorch 1.11.0 documentation SoftMarginLoss class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a two-class classification logistic loss between input tensor x x and target tensor y y (containing 1 or -1).
MultiMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torchMultiMarginLoss — PyTorch 1.11.0 documentation MultiMarginLoss class torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x x (a 2D mini-batch Tensor) and output
TripletMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torchTripletMarginLoss — PyTorch 1.11.0 documentation TripletMarginLoss class torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the triplet loss given an input tensors x1 x1, x2 x2, x3 x3 and a margin with a value greater than 0 0 .
MarginRankingLoss — PyTorch 1.11.0 documentation
pytorch.org › torchMarginRankingLoss — PyTorch 1.11.0 documentation MarginRankingLoss class torch.nn.MarginRankingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the loss given inputs x1 x1, x2 x2, two 1D mini-batch or 0D Tensors , and a label 1D mini-batch or 0D Tensor y y (containing 1 or -1). If
MultiLabelSoftMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › docs › stableMultiLabelSoftMarginLoss — PyTorch 1.11.0 documentation MultiLabelSoftMarginLoss class torch.nn.MultiLabelSoftMarginLoss(weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input x x and target y y of size (N, C) (N,C) .