Du lette etter:

margin loss pytorch

MultiMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
MultiMarginLoss (p=1, margin=1.0, weight=None, size_average=None, ... a multi-class classification hinge loss (margin-based loss) between input x x x (a 2D ...
torch.nn.functional.margin_ranking_loss — PyTorch 1.11.0 ...
https://pytorch.org/.../torch.nn.functional.margin_ranking_loss.html
torch.nn.functional.margin_ranking_loss — PyTorch 1.11.0 documentation torch.nn.functional.margin_ranking_loss torch.nn.functional.margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') → Tensor [source] See MarginRankingLoss for details.
PyTorch TripletMarginLoss(三元损失)_zj-CSDN博客_pytorch …
https://blog.csdn.net/qq_32523711/article/details/103817338
03.01.2020 · 在pytorch中,提供了两个损失函数,都与triplet loss相关。但是使用的方式不一样。 一、TripletMarginLoss 这个就是最正宗的Triplet Loss的实现。它的输入是anchor, positive, negative三个B*C的张量,输出triplet loss的值。定义为: criterion = torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_averag.
MultiLabelMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html
MultiLabelMarginLoss — PyTorch 1.11.0 documentation MultiLabelMarginLoss class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input x x (a 2D mini-batch Tensor ) and output
MultiLabelMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
MultiLabelMarginLoss (size_average=None, reduce=None, reduction='mean')[source]. Creates a criterion that optimizes a multi-class multi-classification hinge ...
TripletMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginLoss.html
TripletMarginLoss — PyTorch 1.11.0 documentation TripletMarginLoss class torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the triplet loss given an input tensors x1 x1, x2 x2, x3 x3 and a margin with a value greater than 0 0 .
TripletMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
Creates a criterion that measures the triplet loss given an input tensors x 1 x1 x1, x 2 x2 x2, x 3 x3 x3 and a margin with a value greater than 0 0 0. This is ...
SoftMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
SoftMarginLoss (size_average=None, reduce=None, reduction='mean')[source]. Creates a criterion that optimizes a two-class classification logistic loss ...
MarginRankingLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
Creates a criterion that measures the loss given inputs x 1 x1 x1, x 2 x2 x2, two 1D mini-batch or 0D Tensors , and a label 1D mini-batch or 0D Tensor y y y ( ...
MultiLabelMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
MultiLabelMarginLoss — PyTorch 1.11.0 documentation MultiLabelMarginLoss class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class multi-classification hinge loss (margin-based loss) between input x x (a 2D mini-batch Tensor ) and output
SoftMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
SoftMarginLoss — PyTorch 1.11.0 documentation SoftMarginLoss class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a two-class classification logistic loss between input tensor x x and target tensor y y (containing 1 or -1).
TripletMarginWithDistanceLoss — PyTorch 1.11.0 ...
https://pytorch.org › generated › to...
margin (float, optional) – A nonnegative margin representing the minimum difference between the positive and negative distances required for the loss to be 0.
MultiMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
MultiMarginLoss — PyTorch 1.11.0 documentation MultiMarginLoss class torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x x (a 2D mini-batch Tensor) and output
SoftMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.SoftMarginLoss.html
SoftMarginLoss — PyTorch 1.11.0 documentation SoftMarginLoss class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a two-class classification logistic loss between input tensor x x and target tensor y y (containing 1 or -1).
TripletMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
TripletMarginLoss — PyTorch 1.11.0 documentation TripletMarginLoss class torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the triplet loss given an input tensors x1 x1, x2 x2, x3 x3 and a margin with a value greater than 0 0 .
MarginRankingLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
MarginRankingLoss — PyTorch 1.11.0 documentation MarginRankingLoss class torch.nn.MarginRankingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the loss given inputs x1 x1, x2 x2, two 1D mini-batch or 0D Tensors , and a label 1D mini-batch or 0D Tensor y y (containing 1 or -1). If
Losses - PyTorch Metric Learning
https://kevinmusgrave.github.io › l...
Parameters: margin: The angular margin penalty in degrees. In the above equation, m = radians(margin) . The paper uses 0.5 radians ...
MultiLabelSoftMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › docs › stable
MultiLabelSoftMarginLoss — PyTorch 1.11.0 documentation MultiLabelSoftMarginLoss class torch.nn.MultiLabelSoftMarginLoss(weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-label one-versus-all loss based on max-entropy, between input x x and target y y of size (N, C) (N,C) .
MarginRankingLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
MarginRankingLoss — PyTorch 1.11.0 documentation MarginRankingLoss class torch.nn.MarginRankingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the loss given inputs x1 x1, x2 x2, two 1D mini-batch or 0D Tensors , and a label 1D mini-batch or 0D Tensor y y (containing 1 or -1). If
machine-learning-articles/how-to-use-pytorch-loss-functions.md
https://github.com › blob › main
margin-loss. mse-loss ... nllloss. pytorch. smooth-l1-loss. softmarginloss ... Implementing binary cross-entropy loss with PyTorch is easy.
PyTorch Model Eval + Examples - Python Guides
https://pythonguides.com/pytorch-model-eval
23.03.2022 · PyTorch Model Eval. In this section, we will learn about how to evaluate the PyTorch model in python.. The eval() is type of switch for a particular parts of model which act differently during training and evaluating time.; It sets the model in evaluation mode and the normalization layer use running statistics.
How to use the max margin loss? - PyTorch Forums
https://discuss.pytorch.org › how-t...
How to use the [max margin loss]:frowning:https://pytorch.org/docs/stable/nn.html#torch.nn.MarginRankingLoss): The inputs are expected to be ...
MultiMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MultiMarginLoss.html
MultiMarginLoss — PyTorch 1.11.0 documentation MultiMarginLoss class torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x x (a 2D mini-batch Tensor) and output
PyTorch中的损失函数--MarginRanking/Hinge/Cosine - 知乎
https://zhuanlan.zhihu.com/p/83364904
MarginRankingLoss大家可能对这个损失函数比较陌生。在机器学习领域,了解一个概念最直观的最快速的方式便是从它的名字开始。 MarginRankingLoss也是如此,拆分一下,Margin,Ranking,Loss。 Margin:前端同学对M…
Losses - PyTorch Metric Learning - GitHub Pages
https://kevinmusgrave.github.io/pytorch-metric-learning/losses
losses.ArcFaceLoss(num_classes, embedding_size, margin=28.6, scale=64, **kwargs) Equation: Parameters: margin: The angular margin penalty in degrees. In the above equation, m = radians (margin). The paper uses 0.5 radians, which is 28.6 degrees. num_classes: The number of classes in your training dataset.
HingeEmbeddingLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
HingeEmbeddingLoss. class torch.nn. HingeEmbeddingLoss (margin=1.0, size_average=None, reduce=None, reduction='mean')[source]. Measures the loss given an ...