Lecture Notes 2 36-705 1 Markov Inequality
stat.cmu.edu › ~larry › =stat7051 Markov Inequality The most elementary tail bound is Markov’s inequality, which asserts that for a positive random variable X 0, with nite mean, P(X t) E[X] t = O 1 t : Intuitively, if the mean of a (positive) random variable is small then it is unlikely to be too large too often, i.e. the probability that it is large is small. While Markov ...
Lecture Notes 2 36-705 1 Markov Inequality
stat.cmu.edu/~larry/=stat705/Lecture2.pdf1 Markov Inequality The most elementary tail bound is Markov’s inequality, which asserts that for a positive random variable X 0, with nite mean, P(X t) E[X] t = O 1 t : Intuitively, if the mean of a (positive) random variable is small then it is unlikely to be too large too often, i.e. the probability that it is large is small. While Markov ...
Markov's inequality - Wikipedia
en.wikipedia.org › wiki › Markov&In probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev (Markov's teacher), and many sources ...
1 Markov’s Inequality - University of Iowa
homepage.cs.uiowa.edu › ~sriram › 5360Theorem 1 (Markov’s Inequality) Let Xbe a non-negative random variable. Then, Pr(X a) E[X] a; for any a>0. Before we discuss the proof of Markov’s Inequality, rst let’s look at a picture that illustrates the event that we are looking at. E[X] a Pr(X a) Figure 1: Markov’s Inequality bounds the probability of the shaded region.