PyTorch Basics - Junhyung Park
inlustris1113.github.io › study › PyTorch-BasicsJan 09, 2022 · The final step is to create a nn.flatten() layer, which will flatten the input, and a fully-connected nn.Linear() layer. When using the nn.Linear() layer, the first parameter must be the last number in the nn.flatten() layer output–in this case, 32, or the product of the last three numbers (4,4,2) of the last nn.maxpool() layer
PyTorch Basics - Junhyung Park
https://inlustris1113.github.io/study/PyTorch-Basics09.01.2022 · The final step is to create a nn.flatten() layer, which will flatten the input, and a fully-connected nn.Linear() layer. When using the nn.Linear() layer, the first parameter must be the last number in the nn.flatten() layer output–in this case, 32, or the product of the last three numbers (4,4,2) of the last nn.maxpool() layer
torch.nn — PyTorch 1.10.1 documentation
pytorch.org › docs › stablenn.ConvTranspose3d. Applies a 3D transposed convolution operator over an input image composed of several input planes. nn.LazyConv1d. A torch.nn.Conv1d module with lazy initialization of the in_channels argument of the Conv1d that is inferred from the input.size (1). nn.LazyConv2d.