ConvTranspose2d — PyTorch 1.10.1 documentation
pytorch.org › docs › stableConvTranspose2d class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None) [source] Applies a 2D transposed convolution operator over an input image composed of several input planes.
torch.nn — PyTorch 1.10.1 documentation
pytorch.org › docs › stableA torch.nn.Conv2d module with lazy initialization of the in_channels argument of the Conv2d that is inferred from the input.size(1). nn.LazyConv3d. A torch.nn.Conv3d module with lazy initialization of the in_channels argument of the Conv3d that is inferred from the input.size(1). nn.LazyConvTranspose1d
pytorch/conv.py at master - GitHub
https://github.com › torch › modulesfrom torch.nn.parameter import Parameter, UninitializedParameter ... Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1)).
python - conv2d function in pytorch - Stack Overflow
https://stackoverflow.com/questions/5599495504.05.2019 · I'm trying to use the function torch.conv2d from Pytorch but can't get a result I understand.... Here is a simple example where the kernel (filt) is the same size as the input (im) to explain what I'm looking for.import pytorch filt = torch.rand(3, 3) im = torch.rand(3, 3) I want to compute a simple convolution with no padding, so the result should be a scalar (i.e. a 1x1 …
Conv2d — PyTorch 1.10.1 documentation
pytorch.org › docs › stableConv2d class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) [source] Applies a 2D convolution over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size