PyTorch Layer Dimensions: The Complete Cheat Sheet | Towards ...
towardsdatascience.com › pytorch-layer-dimensionsJan 11, 2020 · So, if you wanted to load a grey scale, 28 x 28 pixel image into a Conv2d network layer, find the layer type in the example above. Since it wants a 4d tensor, and you already have a 2d tensor with height and width, just add batch_size, and channels (see rule of thumb for channels below) to pad out the extra dimensions, like so: [1, 1, 28, 28].
LayerNorm — PyTorch 1.10.1 documentation
pytorch.org › docs › stableThe mean and standard-deviation are calculated over the last D dimensions, where D is the dimension of normalized_shape.For example, if normalized_shape is (3, 5) (a 2-dimensional shape), the mean and standard-deviation are computed over the last 2 dimensions of the input (i.e. input.mean((-2,-1))).
torch.nn — PyTorch 1.10.1 documentation
pytorch.org › docs › stablenn.ConvTranspose3d. Applies a 3D transposed convolution operator over an input image composed of several input planes. nn.LazyConv1d. A torch.nn.Conv1d module with lazy initialization of the in_channels argument of the Conv1d that is inferred from the input.size (1). nn.LazyConv2d.