Du lette etter:

pytorch lightning quantization

QuantizationAwareTraining — PyTorch Lightning 1.5.7 documentation
pytorch-lightning.readthedocs.io › en › stable
Bases: pytorch_lightning.callbacks.base.Callback. Quantization allows speeding up inference and decreasing memory requirements by performing computations and storing tensors at lower bitwidths (such as INT8 or FLOAT16) than floating point precision. We use native PyTorch API so for more information see PyTorch Quantization.
5 Advanced PyTorch Tools to Level up Your Workflow
https://towardsdatascience.com › 5-...
To give you a quick rundown, we will take a look at these. Hooks; PyTorch Lightning; Quantization; Pruning; TorchScript + JIT. Hooks. To ...
PyTorch Lightning — PyTorch Lightning 1.5.8 documentation
https://pytorch-lightning.readthedocs.io/en/stable/index.html
From PyTorch to PyTorch Lightning [Video] Tutorial 1: Introduction to PyTorch. Tutorial 2: Activation Functions. Tutorial 3: Initialization and Optimization. Tutorial 4: Inception, ResNet and DenseNet. Tutorial 5: Transformers and Multi-Head Attention. Tutorial 6: Basics of …
Applying Quantization to Mobile Speech Recognition Models ...
devblog.pytorchlightning.ai › applying
Jul 22, 2021 · Tell PyTorch about the details of how to quantize including the quantization strategy, quantized dtype, which statistics to base the calibration on, by assigning a QConfig structure to our model as a member qconfig. PyTorch provides reasonable defaults, and PyTorch Lightning will set these for use when we let it know which backend we want. Fuse ...
PyTorch Lightning V1.2.0- DeepSpeed, Pruning, Quantization ...
https://medium.com › pytorch › py...
Quantization Aware Training (QAT) mimics the effects of quantization during training: all computations are carried out in floating points while ...
Applying Quantization to Mobile Speech Recognition Models ...
https://devblog.pytorchlightning.ai › ...
This post covers how to improve model inference efficiency (compute, memory, time) through model quantization with PyTorch Lightning for edge inference and ...
Quantisation and Pruning Support · Issue #76 - GitHub
https://github.com › issues
PyTorchLightning / pytorch-lightning Public ... Have a question about this project? Sign up for a free GitHub account to open an issue and contact ...
Pruning and Quantization - PyTorch Lightning
https://pytorch-lightning.readthedocs.io › ...
Model quantization is another performance optimization technique that allows speeding up inference and decreasing memory requirements by performing computations ...
QuantizationAwareTraining — PyTorch Lightning 1.5.7 ...
https://pytorch-lightning.readthedocs.io/en/stable/extensions/generated/pytorch...
QuantizationAwareTraining¶ class pytorch_lightning.callbacks. QuantizationAwareTraining (qconfig = 'fbgemm', observer_type = 'average', collect_quantization = None, modules_to_fuse = None, input_compatible = True, quantize_on_fit_end = True, observer_enabled_stages = ('train')) [source] ¶. Bases: pytorch_lightning.callbacks.base.Callback Quantization allows speeding …
Pruning and Quantization — PyTorch Lightning 1.5.8 documentation
pytorch-lightning.readthedocs.io › en › stable
Lightning includes QuantizationAwareTraining callback (using PyTorch’s native quantization, read more here), which allows creating fully quantized models (compatible with torchscript). from pytorch_lightning.callbacks import QuantizationAwareTraining class RegressionModel ( LightningModule ): def __init__ ( self ): super () . __init__ () self ...
How to load a Quantised model in PyTorch or PyTorch ...
https://discuss.pytorch.org › how-t...
I applied Quantisation aware training using PyTorch lightning on one of the architectures for faster inference, The model has been trained ...
pytorch_lightning.callbacks.quantization — PyTorch ...
https://pytorch-lightning.readthedocs.io/.../callbacks/quantization.html
# See the License for the specific language governing permissions and # limitations under the License. r """ Quantization ^^^^^ """ import copy import functools from typing import Any, Callable, Dict, Optional, Sequence, Union import torch from torch import Tensor from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_8 if …
pytorch-lightning/quantization.py at master ...
github.com › PyTorchLightning › pytorch-lightning
pytorch-lightning / pytorch_lightning / callbacks / quantization.py / Jump to Code definitions wrap_qat_forward_context Function wrapper Function wrap_quantize_forward_context Function wrapper Function _recursive_hasattr Function QuantizationAwareTraining Class __init__ Function _check_feasible_fuse Function on_fit_start Function on_fit_end ...
PyTorch Lightning V1.2.0- DeepSpeed, Pruning, Quantization ...
https://medium.com/pytorch/pytorch-lightning-v1-2-0-43a032ade82b
19.02.2021 · PyTorch Lightning V1.2.0 includes many new integrations: DeepSpeed, Pruning, Quantization, SWA, PyTorch autograd profiler, and more.
Quantization – PyTorch Lightning Developer Blog
https://devblog.pytorchlightning.ai/tagged/quantization
Read writing about Quantization in PyTorch Lightning Developer Blog. PyTorch Lightning is a lightweight machine learning framework that handles most of the engineering work, leaving you to focus on the science. Check it out: pytorchlightning.ai
Pruning and Quantization — PyTorch Lightning 1.5.8 ...
https://pytorch-lightning.readthedocs.io/.../pruning_quantization.html
Lightning includes QuantizationAwareTraining callback (using PyTorch’s native quantization, read more here), which allows creating fully quantized models (compatible with torchscript). from pytorch_lightning.callbacks import QuantizationAwareTraining class RegressionModel ( LightningModule ): def __init__ ( self ): super () . __init__ () self . layer_0 = nn .
PyTorch Lightning V1.2.0- DeepSpeed, Pruning, Quantization ...
medium.com › pytorch › pytorch-lightning-v1/2/0-43a
Feb 19, 2021 · PyTorch Lightning V1.2.0 includes many new integrations: DeepSpeed, Pruning, Quantization, SWA, PyTorch autograd profiler, and more.