Du lette etter:

pytorch margin loss

TripletMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
Creates a criterion that measures the triplet loss given an input tensors x 1 x1 x1, x 2 x2 x2, x 3 x3 x3 and a margin with a value greater than 0 0 0. This is ...
SoftMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.SoftMarginLoss.html
SoftMarginLoss — PyTorch 1.11.0 documentation SoftMarginLoss class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a two-class classification logistic loss between input tensor x x and target tensor y y (containing 1 or -1).
MultiMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
MultiMarginLoss — PyTorch 1.11.0 documentation MultiMarginLoss class torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x x (a 2D mini-batch Tensor) and output
TripletMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginLoss.html
TripletMarginLoss — PyTorch 1.11.0 documentation TripletMarginLoss class torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the triplet loss given an input tensors x1 x1, x2 x2, x3 x3 and a margin with a value greater than 0 0 .
HingeEmbeddingLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
HingeEmbeddingLoss. class torch.nn. HingeEmbeddingLoss (margin=1.0, size_average=None, reduce=None, reduction='mean')[source]. Measures the loss given an ...
torch.nn.functional.margin_ranking_loss — PyTorch 1.11.0 ...
https://pytorch.org/.../torch.nn.functional.margin_ranking_loss.html
torch.nn.functional.margin_ranking_loss — PyTorch 1.11.0 documentation torch.nn.functional.margin_ranking_loss torch.nn.functional.margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') → Tensor [source] See MarginRankingLoss for details.
PyTorch Loss Functions: The Ultimate Guide - neptune.ai
https://neptune.ai › blog › pytorch-...
The Margin Ranking Loss computes a criterion to predict the relative distances between inputs. This is different from other loss functions, like ...
Multilabelmarginloss - PyTorch Forums
https://discuss.pytorch.org/t/multilabelmarginloss/87022
26.06.2020 · Creates a criterion that optimizes a multi-class classification hinge loss (margin-based loss) between input x (a 2D mini-batch Tensor) and output y. Based on the shape information it should also work for your current output and target shapes. Let me know, if it …
GitHub - amirhfarzaneh/lsoftmax-pytorch: The Pytorch ...
https://github.com/amirhfarzaneh/lsoftmax-pytorch
27.08.2018 · The Pytorch Implementation of L-Softmax. this repository contains a new, clean and enhanced pytorch implementation of L-Softmax proposed in the following paper: Large-Margin Softmax Loss for Convolutional Neural Networks By Weiyang Liu, Yandong Wen, Zhiding Yu, Meng Yang [ pdf in arxiv] [ original CAFFE code by authors] L-Softmax proposes a ...
SoftMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
SoftMarginLoss — PyTorch 1.11.0 documentation SoftMarginLoss class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that optimizes a two-class classification logistic loss between input tensor x x and target tensor y y (containing 1 or -1).
MarginRankingLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
Creates a criterion that measures the loss given inputs x 1 x1 x1, x 2 x2 x2, two 1D mini-batch or 0D Tensors , and a label 1D mini-batch or 0D Tensor y y y ( ...
MarginRankingLoss — PyTorch 1.11.0 documentation
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
MarginRankingLoss — PyTorch 1.11.0 documentation MarginRankingLoss class torch.nn.MarginRankingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the loss given inputs x1 x1, x2 x2, two 1D mini-batch or 0D Tensors , and a label 1D mini-batch or 0D Tensor y y (containing 1 or -1). If
GitHub - Leethony/Additive-Margin-Softmax-Loss-Pytorch ...
https://github.com/Leethony/Additive-Margin-Softmax-Loss-Pytorch
17.06.2019 · There are a simple set of experiments on Fashion-MNIST [2] included in train_fMNIST.py which compares the use of ordinary Softmax and Additive Margin Softmax loss functions by projecting embedding features onto a 3D sphere. The experiments can be run like so: python train_fMNIST.py --num-epochs 40 --seed 1234 --use-cuda.
SoftMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
SoftMarginLoss (size_average=None, reduce=None, reduction='mean')[source]. Creates a criterion that optimizes a two-class classification logistic loss ...
TripletMarginLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
TripletMarginLoss — PyTorch 1.11.0 documentation TripletMarginLoss class torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the triplet loss given an input tensors x1 x1, x2 x2, x3 x3 and a margin with a value greater than 0 0 .
Losses - PyTorch Metric Learning
https://kevinmusgrave.github.io › l...
Parameters: margin: The angular margin penalty in degrees. In the above equation, m = radians(margin) . The paper uses 0.5 radians ...
MultiMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
MultiMarginLoss (p=1, margin=1.0, weight=None, size_average=None, ... a multi-class classification hinge loss (margin-based loss) between input x x x (a 2D ...
Loss function not implemented on pytorch - PyTorch Forums
https://discuss.pytorch.org/t/loss-function-not-implemented-on-pytorch/147337
24.03.2022 · Loss function not implemented on pytorch. yuri (ahmed) March 24, 2022, 1:56pm #1. I had to detach my model’s output to calculate the loss value. This is because the loss function is not implemented on PyTorch and therefore it accepts no tensors but NumPy arrays instead. the problem now is that the loss value is detached from the computational ...
MarginRankingLoss — PyTorch 1.11.0 documentation
pytorch.org › torch
The loss function for each pair of samples in the mini-batch is: \text {loss} (x1, x2, y) = \max (0, -y * (x1 - x2) + \text {margin}) loss(x1,x2,y) = max(0,−y∗(x1−x2)+ margin) Parameters margin ( float, optional) – Has a default value of 0 0. size_average ( bool, optional) – Deprecated (see reduction ).
Losses - PyTorch Metric Learning - GitHub Pages
kevinmusgrave.github.io › pytorch-metric-learning
margin_loss: The loss per triplet in the batch. Reduction type is "triplet". beta_reg_loss: The regularization loss per element in self.beta. Reduction type is "already_reduced" if self.num_classes = None. Otherwise it is "element". MultipleLosses¶ This is a simple wrapper for multiple losses. Pass in a list of already-initialized loss functions.
TripletMarginWithDistanceLoss — PyTorch 1.11.0 ...
https://pytorch.org › generated › to...
margin (float, optional) – A nonnegative margin representing the minimum difference between the positive and negative distances required for the loss to be 0.
MultiLabelMarginLoss — PyTorch 1.11.0 documentation
https://pytorch.org › generated › to...
MultiLabelMarginLoss (size_average=None, reduce=None, reduction='mean')[source]. Creates a criterion that optimizes a multi-class multi-classification hinge ...
torch.nn.functional.margin_ranking_loss — PyTorch 1.11.0 ...
pytorch.org › docs › stable
Learn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
How to use the max margin loss? - PyTorch Forums
https://discuss.pytorch.org › how-t...
How to use the [max margin loss]:frowning:https://pytorch.org/docs/stable/nn.html#torch.nn.MarginRankingLoss): The inputs are expected to be ...
Losses - PyTorch Metric Learning - GitHub Pages
https://kevinmusgrave.github.io/pytorch-metric-learning/losses
losses.ArcFaceLoss(num_classes, embedding_size, margin=28.6, scale=64, **kwargs) Equation: Parameters: margin: The angular margin penalty in degrees. In the above equation, m = radians (margin). The paper uses 0.5 radians, which is 28.6 degrees. num_classes: The number of classes in your training dataset.
PyTorch TripletMarginLoss(三元损失)_zj-CSDN博客_pytorch …
https://blog.csdn.net/qq_32523711/article/details/103817338
03.01.2020 · 在pytorch中,提供了两个损失函数,都与triplet loss相关。但是使用的方式不一样。 一、TripletMarginLoss 这个就是最正宗的Triplet Loss的实现。它的输入是anchor, positive, negative三个B*C的张量,输出triplet loss的值。定义为: criterion = torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, size_averag.