pytorch-modules · PyPI
pypi.org › project › pytorch-modulesMay 10, 2020 · This module contains a variety of neural network layers, modules and loss functions. import torch from pytorch_modules.nn import ResBlock # NCHW tensor inputs = torch.ones ( [8, 8, 224, 224]) block = ResBlock (8, 16) outputs = block (inputs) ### pytorch_modules.backbones This module includes a series of modified backbone networks.
torch.nn.modules.module — PyTorch 1.10.1 documentation
pytorch.org › docs › stableLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models
pytorch-modules · PyPI
https://pypi.org/project/pytorch-modules10.05.2020 · This module contains a variety of neural network layers, modules and loss functions. import torch from pytorch_modules.nn import ResBlock. # NCHW tensor inputs = torch.ones ( [8, 8, 224, 224]) block = ResBlock (8, 16) outputs = block (inputs) ### pytorch_modules.backbones. This module includes a series of modified backbone networks.
Modules — PyTorch 1.10.1 documentation
pytorch.org › docs › stablePyTorch uses modules to represent neural networks. Modules are: Building blocks of stateful computation. PyTorch provides a robust library of modules and makes it simple to define new custom modules, allowing for easy construction of elaborate, multi-layer neural networks. Tightly integrated with PyTorch’s autograd system.
Module — PyTorch 1.10.1 documentation
pytorch.org › generated › torchModule — PyTorch 1.9.1 documentation Module class torch.nn.Module [source] Base class for all neural network modules. Your models should also subclass this class. Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes: