torch.rand — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.rand. torch.rand(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor. Returns a tensor filled with random numbers from a uniform distribution on the interval. [ 0, 1) [0, 1) [0,1) The shape of the tensor is defined by the variable argument size. Parameters.
torch.nn.init — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.nn.init.dirac_(tensor, groups=1) [source] Fills the {3, 4, 5}-dimensional input Tensor with the Dirac delta function. Preserves the identity of the inputs in Convolutional layers, where as many input channels are preserved as possible. In case of groups>1, each group of channels preserves identity. Parameters.
Random seed initialization - PyTorch Forums
discuss.pytorch.org › t › random-seed-initializationSep 26, 2017 · I have a problem regarding a large variation in the result I get, by running my model multiple times. The exact same architecture and training gives anywhere from 91.5% to 93.4% accuracy on image classification (cifar 10). The problem is that I don’t know how to use the torch random seed in order to get the better results, not the worse ones. I tried various values for the random seed, with ...