segmentation-models-pytorch · PyPI
https://pypi.org/project/segmentation-models-pytorch18.11.2021 · Segmentation model is just a PyTorch nn.Module, which can be created as easy as: import segmentation_models_pytorch as smp model = smp.Unet( encoder_name="resnet34", # choose encoder, e.g. mobilenet_v2 or efficientnet-b7 encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization in_channels=1, # model input ...
GitHub - Minerva-J/Pytorch-Segmentation-multi-models: Pytorch ...
github.com › Pytorch-Segmentation-multi-modelsApr 08, 2020 · Pytorch-Segmentation-multi-models. Pytorch implementation for Semantic Segmentation with multi models for blood vessel segmentation in fundus images of DRIVE dataset. Deeplabv3, Deeplabv3_plus, PSPNet, UNet, UNet_AutoEncoder, UNet_nested, R2AttUNet, AttentionUNet, RecurrentUNet, SEGNet, CENet, DsenseASPP, RefineNet, RDFNet. Data
segmentation-models-pytorch · PyPI
pypi.org › project › segmentation-models-pytorchNov 18, 2021 · Segmentation model is just a PyTorch nn.Module, which can be created as easy as: import segmentation_models_pytorch as smp model = smp.Unet( encoder_name="resnet34", # choose encoder, e.g. mobilenet_v2 or efficientnet-b7 encoder_weights="imagenet", # use `imagenet` pre-trained weights for encoder initialization in_channels=1, # model input ...