torch.optim — PyTorch 1.10.1 documentation
pytorch.org › docs › stablePrior to PyTorch 1.1.0, the learning rate scheduler was expected to be called before the optimizer’s update; 1.1.0 changed this behavior in a BC-breaking way. If you use the learning rate scheduler (calling scheduler.step ()) before the optimizer’s update (calling optimizer.step () ), this will skip the first value of the learning rate ...
torch.heaviside — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.heaviside. torch.heaviside(input, values, *, out=None) → Tensor. Computes the Heaviside step function for each element in input . The Heaviside step function is defined as: heaviside ( i n p u t, v a l u e s) = { 0, if input < 0 v a l u e s, if input == 0 1, if input > 0. \text { {heaviside}} (input, values) = \begin {cases} 0, & \text {if input < 0}\\ values, & \text {if input == 0}\\ 1, & \text {if input > 0} \end {cases} heaviside(input,values)= ⎩⎨⎧.
torch.optim — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/optim.htmlPrior to PyTorch 1.1.0, the learning rate scheduler was expected to be called before the optimizer’s update; 1.1.0 changed this behavior in a BC-breaking way. If you use the learning rate scheduler (calling scheduler.step ()) before the optimizer’s update (calling optimizer.step () ), this will skip the first value of the learning rate ...