torch.cuda.set_device — PyTorch 1.11.0 documentation
pytorch.org › generated › torchtorch.cuda.set_device — PyTorch 1.11.0 documentation torch.cuda.set_device torch.cuda.set_device(device) [source] Sets the current device. Usage of this function is discouraged in favor of device. In most cases it’s better to use CUDA_VISIBLE_DEVICES environmental variable. Parameters device ( torch.device or int) – selected device.
python - How to check if pytorch is using the GPU? - Stack ...
stackoverflow.com › questions › 48152674Jan 08, 2018 · or the GPU is being hidden by the environmental variable CUDA_VISIBLE_DEVICES. When the value of CUDA_VISIBLE_DEVICES is -1, then all your devices are being hidden. You can check that value in code with this line: os.environ['CUDA_VISIBLE_DEVICES'] If the above function returns True that does not necessarily mean that you are using the GPU. In Pytorch you can allocate tensors to devices when you create them.
PyTorch is not using the GPU specified by CUDA_VISIBLE ...
github.com › pytorch › pytorchMay 16, 2019 · Run the following script using command CUDA_VISIBLE_DEVICES=3 python test.py # test.py import os import torch import time import sys print ( os . environ ) print ( torch . cuda . device_count ()) print ( torch . cuda . current_device ()) print ( os . getpid ()) sys . stdout . flush () device = torch . device ( 'cuda' ) a = torch . randn ( 10 , 10 , device = device ) os . system ( 'nvidia-smi' )
setting CUDA_VISIBLE_DEVICES just has no effect #9158
github.com › pytorch › pytorchJul 03, 2018 · Ideally, train.py should look something like: import os os.environ ['CUDA_VISIBLE_DEVICES'] = "2" import json import torch import torch.nn as nn .... As @SsnL mentioned, the key is to add the two lines at the very top of the module. ibmua, PingjunChen, Xiaodong-Bran, gkoumasd, KyuminHwang, and vinven7 reacted with thumbs up emoji.
torch.cuda.device_count — PyTorch 1.11.0 documentation
pytorch.org › torchLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models