shap.plots.force — SHAP latest documentation
shap.readthedocs.io › shapshap.plots.force. Visualize the given SHAP values with an additive force layout. This is the reference value that the feature contributions start from. For SHAP values it should be the value of explainer.expected_value. Matrix of SHAP values (# features) or (# samples x # features). If this is a 1D array then a single force plot will be drawn ...
shap.plots.bar — SHAP latest documentation
shap.readthedocs.io › shapshap.plots.bar(shap_values, max_display=10, order=shap.Explanation.abs, clustering=None, clustering_cutoff=0.5, merge_cohorts=False, show_data='auto', show=True) . Create a bar plot of a set of SHAP values. If a single sample is passed then we plot the SHAP values as a bar chart.
shap.image_plot — SHAP latest documentation
shap-lrjball.readthedocs.io › shapPlots SHAP values for image inputs. Parameters shap_values [numpy.array] List of arrays of SHAP values. Each array has the shap (# samples x width x height x channels), and the length of the list is equal to the number of model outputs that are being explained. pixel_values numpy.array. Matrix of pixel values (# samples x width x height x channels) for each image.