CrossEntropyLoss — PyTorch 1.10.1 documentation
pytorch.org › torchclass torch.nn.CrossEntropyLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) [source] This criterion computes the cross entropy loss between input and target. It is useful when training a classification problem with C classes. If provided, the optional argument weight should be a 1D Tensor assigning weight to each of the classes.
BCELoss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableBCELoss. class torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean') [source] Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities: The unreduced (i.e. with reduction set to 'none') loss can be described as:
torch.nn.functional.binary_cross_entropy_with_logits ...
pytorch.org › docs › stabletorch.nn.functional.binary_cross_entropy_with_logits. Function that measures Binary Cross Entropy between target and input logits. See BCEWithLogitsLoss for details. input – Tensor of arbitrary shape as unnormalized scores (often referred to as logits). weight ( Tensor, optional) – a manual rescaling weight if provided it’s repeated to ...