Du lette etter:

torch list cuda devices

How to check if pytorch is using the GPU? - Stack Overflow
https://stackoverflow.com › how-to...
device_count() where list(range(torch.cuda.device_count())) should give you a list over all device indices. – MBT. Nov 11 '20 at ...
get list of devices torch Code Example
https://www.codegrepper.com › ge...
Python queries related to “get list of devices torch” · pytorch gpu · pytorch use gpu · pytorch gpu available · cuda device torch · check gpu pytorch ...
PyTorch: torch.cuda.device Class Reference - ccoderun.ca
https://www.ccoderun.ca › doxygen
DeferredCudaCallError. ▻device ... Public Member Functions | Public Attributes | List of all members ... Collaboration diagram for torch.cuda.device:.
How to set up and Run CUDA Operations in Pytorch
https://www.geeksforgeeks.org › h...
torch.cuda.get_device_name(device_ID): Returns name of the CUDA device with ID = 'device_ID'. Code:.
torch.cuda.get_device_name — PyTorch 1.10.1 documentation
pytorch.org › torch
torch.cuda.get_device_name. Gets the name of a device. device ( torch.device or int, optional) – device for which to return the name. This function is a no-op if this argument is a negative integer. It uses the current device, given by current_device () , if device is None (default).
Incompatible for using list and cuda together? - PyTorch ...
https://discuss.pytorch.org/t/incompatible-for-using-list-and-cuda...
04.03.2019 · The problem with your first approach is, that a list is a built-in type which does not have a cuda method.. The problem with your second approach is, that torch.nn.ModuleList is designed to properly handle the registration of torch.nn.Module components and thus does not allow passing tensors to it.. There are two ways to overcome this: You could call .cuda on each …
torch.cuda — PyTorch master documentation
https://alband.github.io › doc_view
This package adds support for CUDA tensor types, that implement the same function as CPU tensors, but they utilize GPUs for computation. It is lazily ...
PyTorch CUDA | Complete Guide on PyTorch CUDA
www.educba.com › pytorch-cuda
torch.cuda.memory_allocated(ID of the device) torch.cuda.memory_reserved(ID of the device) Cached memory can be released from CUDA using the following command. torch.cuda.empty_cache() If we have several CUDA devices and plan to allocate several tasks to each device while running the command, it is necessary to mention the device’s ID for the ...
torch.cuda.get_device_name — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.cuda.get_device_name.html
torch.cuda.get_device_name(device=None) [source] Gets the name of a device. Parameters. device ( torch.device or int, optional) – device for which to return the name. This function is a no-op if this argument is a negative integer. It uses the current device, given by current_device () , if device is None (default). Returns.
python - How do I list all currently available GPUs with ...
https://stackoverflow.com/questions/64776822
09.11.2020 · torch.cuda.device(i) returns a context manager that causes future commands to use that device. Putting them all in a list like this is pointless. All you really need is torch.cuda.device_count(), your cuda devices are cuda:0, cuda:1 etc. up to device_count() - 1. –
torch.cuda — PyTorch 1.10 documentation
https://pytorch.org › docs › stable
This package adds support for CUDA tensor types, that implement the same function as CPU tensors, but they utilize GPUs for computation. It is lazily ...
torch.cuda — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/cuda.html
torch.cuda. This package adds support for CUDA tensor types, that implement the same function as CPU tensors, but they utilize GPUs for computation. It is lazily initialized, so you can always import it, and use is_available () to determine if your system supports CUDA.
python - How do I list all currently available GPUs with ...
stackoverflow.com › questions › 64776822
Nov 10, 2020 · torch.cuda.device(i) returns a context manager that causes future commands to use that device. Putting them all in a list like this is pointless. All you really need is torch.cuda.device_count(), your cuda devices are cuda:0, cuda:1 etc. up to device_count() - 1. –
I have 3 gpu, why torch.cuda.device_count() only return '1 ...
discuss.pytorch.org › t › i-have-3-gpu-why-torch
Sep 10, 2017 · use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor Tensor = FloatTensor import pycuda from pycuda import compiler import pycuda.driver as drv drv.init() print("%d device(s) found."
torch.cuda — PyTorch 1.10.1 documentation
pytorch.org › docs › stable
torch.cuda. This package adds support for CUDA tensor types, that implement the same function as CPU tensors, but they utilize GPUs for computation. It is lazily initialized, so you can always import it, and use is_available () to determine if your system supports CUDA.
Memory Management and Using Multiple GPUs - Paperspace ...
https://blog.paperspace.com › pyto...
if torch.cuda.is_available(): dev = "cuda:0" else: dev = "cpu" device ... A detailed list of new_ functions can be found in PyTorch docs the link of which I ...
I have 3 gpu, why torch.cuda.device_count() only return '1 ...
https://discuss.pytorch.org/t/i-have-3-gpu-why-torch-cuda-device-count...
10.09.2017 · use_cuda = torch.cuda.is_available() FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor Tensor = FloatTensor import pycuda from pycuda import compiler import pycuda.driver as drv drv.init() print("%d device(s) found."
cuda cheat sheet - gists · GitHub
https://gist.github.com › githubfoam
python -c 'import torch; print(torch.cuda.is_available())' #should print True ... dev = torch.device("cuda") if torch.cuda.is_available() else ...
Python Code Examples for get available devices
https://www.programcreek.com › p...
... (torch.device): Main device (GPU 0 or CPU). gpu_ids (list): List of IDs of all GPUs that are available. """ gpu_ids = [] if torch.cuda.is_available(): ...