Du lette etter:

torch nn init

pytorch.org
pytorch.org › docs › 1
We would like to show you a description here but the site won’t allow us.
How to initialize weights in PyTorch? - FlutterQ
https://flutterq.com › how-to-initial...
Typical use includes initializing the parameters of a model (see also torch-nn-init). Example:.
python - How to initialize weights in PyTorch? - Stack Overflow
stackoverflow.com › questions › 49433936
Mar 22, 2018 · torch.nn.init.normal_(tensor, mean=0, std=1) Or to use a constant distribution write: torch.nn.init.constant_(tensor, value) Or to use an uniform distribution: torch.nn.init.uniform_(tensor, a=0, b=1) # a: lower_bound, b: upper_bound You can check other methods to initialise tensors here
看pytorch文档学深度学习——nn.init - 知乎
https://zhuanlan.zhihu.com/p/101313762
torch.nn.init.calculate_gain(nonlinearity,param=None)返回给定的非线性函数的推荐增益值。这些值如下所示参数nonlinearity - 非线性函数(nn.functional名称)param - 非线性函数的可选参数 torch.nn.init.unif…
Linear — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
Linear. class torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None) [source] Applies a linear transformation to the incoming data: y = x A T + b. y = xA^T + b y = xAT + b. This module supports TensorFloat32. Parameters.
torch.nn.init — PyTorch 1.10.1 documentation
pytorch.org › docs › stable
torch.nn.init.orthogonal_(tensor, gain=1) [source] Fills the input Tensor with a (semi) orthogonal matrix, as described in Exact solutions to the nonlinear dynamics of learning in deep linear neural networks - Saxe, A. et al. (2013).
How to initialize weights in PyTorch?
https://newbedev.com/how-to-initialize-weights-in-pytorch
Typical use includes initializing the parameters of a model (see also torch-nn-init). Example: def init_weights(m): if type(m) == nn.Linear: torch.nn.init.xavier_uniform(m.weight) m.bias.data.fill_(0.01) net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) net.apply(init_weights) We compare different mode of weight-initialization using the ...
How to initialize weights in PyTorch? - Stack Overflow
https://stackoverflow.com › how-to...
Single layer. To initialize the weights of a single layer, use a function from torch.nn.init . For instance: conv1 = torch.nn.Conv2d(.
pytorch/init.py at master - GitHub
https://github.com › torch › nn › init
pytorch/torch/nn/init.py ... is more than 2 std from [a, b] in nn.init.trunc_normal_. " ... nonlinearity: the non-linear function (`nn.functional` name).
torch.nn.init — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/nn.init.html
torch.nn.init.dirac_(tensor, groups=1) [source] Fills the {3, 4, 5}-dimensional input Tensor with the Dirac delta function. Preserves the identity of the inputs in Convolutional layers, where as many input channels are preserved as possible. In case of groups>1, each group of channels preserves identity. Parameters.
torch.nn.init - PyTorch中文文档
https://p1.readthedocs.io › work
torch.nn.init.uniform(tensor, a=0, b=1). 从均匀分布U(a, b)中生成值,填充输入的张量或变量. 参数:. tensor - n维的torch.Tensor; a -均匀分布的下界 ...
torch.nn — PyTorch 1.10.1 documentation
pytorch.org › docs › stable
A sequential container that holds and manages the original parameter or buffer of a parametrized torch.nn.Module. Utility functions in other modules Quantized Functions Quantization refers to techniques for performing computations and storing tensors at lower bitwidths than floating point precision.
/torch/nn/init.py - pytorch
https://code.ihub.org.cn › entry › init
Args: tensor: an n-dimensional `torch.Tensor`; val: the value to fill the tensor with; Examples: >>> w = torch.empty(3, 5); >>> nn.init.constant_(w, 0.3) ...
torch.nn.init — PyTorch 1.10.1 documentation
https://pytorch.org › nn.init.html
torch.nn.init ... In order to implement Self-Normalizing Neural Networks , you should use nonlinearity='linear' instead of nonlinearity='selu' . This gives the ...
torch.nn.init - AI研习社
https://lib.yanxishe.com › api › tor...
torch.nn.init¶ · tensor – an n-dimensional torch.Tensor · a – the lower bound of the uniform distribution · b – the upper bound of the uniform distribution.
【细聊】torch.nn.init 初始化_绿色羽毛-CSDN博客_torch.nn.init
https://blog.csdn.net/ViatorSun/article/details/119619246
11.08.2021 · init.uniform从均匀分布 \mathcal{U}(a, b)中生成值,填充输入的张量或变量 Parameters:tensor - n维的torch.Tensor a - 均匀分布的下界 b - 均匀分布的上界 nn.init.normal 从给定均值和标准差的**正态分布** $\mathcal{N}(mean, std)$中生成值,填充输入的张量或变量 Parameters: tensor – n维的torch.Tensor mean – 正态分布的均值 std nn ...
Python Examples of torch.nn.init.orthogonal_
www.programcreek.com › torch
Python torch.nn.init.orthogonal_ () Examples The following are 30 code examples for showing how to use torch.nn.init.orthogonal_ () . These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
python - How to initialize weights in PyTorch? - Stack ...
https://stackoverflow.com/questions/49433936
21.03.2018 · torch.nn.init.normal_(tensor, mean=0, std=1) Or to use a constant distribution write: torch.nn.init.constant_(tensor, value) Or to use an uniform distribution: torch.nn.init.uniform_(tensor, a=0, b=1) # a: lower_bound, b: upper_bound You can check other methods to initialise tensors here
Python Examples of torch.nn.init.uniform_ - ProgramCreek.com
https://www.programcreek.com › t...
The following are 30 code examples for showing how to use torch.nn.init.uniform_(). These examples are extracted from open source projects.
Python Examples of torch.nn.init.uniform_
www.programcreek.com › torch
Python torch.nn.init.uniform_ () Examples The following are 30 code examples for showing how to use torch.nn.init.uniform_ () . These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
pytorch中模型参数的访问、初始化和共享 - 知乎
https://zhuanlan.zhihu.com/p/144864894
一、访问模型参数:. import torch from torch import nn from torch.nn import init net = nn.Sequential (nn.Linear (4, 3), nn.ReLU (), nn.Linear (3, 1)) # pytorch已进行默认初始化. 上一节说了,Sequential类继承自Module类,对于Sequential实例中含模型参数的层,我们可以通过Module类的parameters ()或者 ...
torch.nn.init - PyTorch中文文档
https://pytorch-cn.readthedocs.io/zh/latest/package_references/nn_init
torch.nn.init.xavier_uniform (tensor, gain= 1 ) 根据Glorot, X.和Bengio, Y.在“Understanding the difficulty of training deep feedforward neural networks”中描述的方法,用一个均匀分布生成值,填充输入的张量或变量。. 结果张量中的值采样自U (-a, a),其中a= gain * sqrt …
pytorch.org
https://pytorch.org/docs/1.2.0/nn.init.html
Vi vil gjerne vise deg en beskrivelse her, men området du ser på lar oss ikke gjøre det.
Python Examples of torch.nn.init.orthogonal_
https://www.programcreek.com/python/example/119192/torch.nn.init...
Python. torch.nn.init.orthogonal_ () Examples. The following are 30 code examples for showing how to use torch.nn.init.orthogonal_ () . These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each ...