torch.Tensor — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/tensorstorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
torch.Tensor — PyTorch 1.10.1 documentation
pytorch.org › docs › stabletorch.ByteTensor. /. 1. Sometimes referred to as binary16: uses 1 sign, 5 exponent, and 10 significand bits. Useful when precision is important at the expense of range. 2. Sometimes referred to as Brain Floating Point: uses 1 sign, 8 exponent, and 7 significand bits. Useful when range is important, since it has the same number of exponent bits ...
torch.Tensor.size — PyTorch 1.10.1 documentation
pytorch.org › generated › torchTensor.size(dim=None) → torch.Size or int. Returns the size of the self tensor. If dim is not specified, the returned value is a torch.Size, a subclass of tuple . If dim is specified, returns an int holding the size of that dimension. Parameters. dim ( int, optional) – The dimension for which to retrieve the size. Example:
torch.size(), torch.view(),torch.add_()_张学渣的博客-CSDN博客 ...
https://blog.csdn.net/qq_36302589/article/details/8801311128.02.2019 · torch.size()的理解 最新发布 qq_25603827的博客 12-111340 import torchx = torch.zeros((5, 2, 3, 4)) print(x.size()) print(x) (5, 2, 3, 4)分别表示(batch size, channel, height, width) torch.permute()/torch.cat()/torch.add() further_Yan的博客 12-14516 维度转换 在torch中应用卷积的时候,我们有时候遇到一些问题。 1.卷积维度合并 // An highlighted block x0 = …