How to add padding mask to nn.TransformerEncoder module ...
discuss.pytorch.org › t › how-to-add-padding-mask-toDec 08, 2019 · I think, when using src_mask, we need to provide a matrix of shape (S, S), where S is our source sequence length, for example, import torch, torch.nn as nn q = torch.randn(3, 1, 10) # source sequence length 3, batch size 1, embedding size 10 attn = nn.MultiheadAttention(10, 1) # embedding size 10, one head attn(q, q, q) # self attention
pytorch - Difference between src_mask and src_key_padding ...
stackoverflow.com › questions › 62170439Jun 03, 2020 · Difference between src_mask and src_key_padding_mask. The general thing is to notice the difference between the use of the tensors _mask vs _key_padding_mask.Inside the transformer when attention is done we usually get an squared intermediate tensor with all the comparisons of size [Tx, Tx] (for the input to the encoder), [Ty, Ty] (for the shifted output - one of the inputs to the decoder) and ...
TransformerEncoder — PyTorch 1.10.1 documentation
pytorch.org › torchforward(src, mask=None, src_key_padding_mask=None) [source] Pass the input through the encoder layers in turn. Parameters src – the sequence to the encoder (required). mask – the mask for the src sequence (optional). src_key_padding_mask – the mask for the src keys per batch (optional). Shape: see the docs in Transformer class.
How to add padding mask to nn.TransformerEncoder module ...
https://discuss.pytorch.org/t/how-to-add-padding-mask-to-nn...08.12.2019 · I think, when using src_mask, we need to provide a matrix of shape (S, S), where S is our source sequence length, for example, import torch, torch.nn as nn q = torch.randn(3, 1, 10) # source sequence length 3, batch size 1, embedding size 10 attn = nn.MultiheadAttention(10, 1) # embedding size 10, one head attn(q, q, q) # self attention