8.3 - Chebyshev Polynomials
www3.nd.edu › ~zxu2 › acms40390F11Chebyshev polynomials are orthogonal w.r.t. weight function w(x) = p1 1 x2. Namely, Z 1 21 T n(x)T m(x) p 1 x2 dx= ˆ 0 if m6= n ˇ if n= m for each n 1 (1) Theorem (Roots of Chebyshev polynomials) The roots of T n(x) of degree n 1 has nsimple zeros in [ 1;1] at x k= cos 2k 1 2n ˇ; for each k= 1;2 n: Moreover, T n(x) assumes its absolute ...
Chebyshev/Orthogonal Polynomial Model
abaqus-docs.mit.edu › 2017 › EnglishChebyshev orthogonal polynomials are a common type of orthogonal polynomials that are particularly useful for equally spaced sample points. They are used when the sampling strategy is an orthogonal array. Isight implements Taguchi’s method (Taguchi, 1987) of fitting Chebyshev polynomials from an orthogonal array.
Chebyshev Polynomials - johndcook.com
www.johndcook.com › ChebyshevPolynomialsChebyshev Polynomials John D. Cook∗ February 9, 2008 Abstract The Chebyshev polynomials are both elegant and useful. This note summarizes some of their elementary properties with brief proofs. 1 Cosines We begin with the following identity for cosines. cos((n + 1)θ) = 2cos(θ)cos(nθ) − cos((n − 1)θ) (1) This may be proven by applying ...
8.3 - Chebyshev Polynomials
https://www3.nd.edu/~zxu2/acms40390F11/sec8-3.pdfOrthogonality Chebyshev polynomials are orthogonal w.r.t. weight function w(x) = p1 1 x2. Namely, Z 1 21 T n(x)T m(x) p 1 x2 dx= ˆ 0 if m6= n ˇ if n= m for each n 1 (1) Theorem (Roots of Chebyshev polynomials) The roots of T n(x) of degree n 1 has nsimple zeros in [ 1;1] at x k= cos 2k 1 2n ˇ; for each k= 1;2 n: Moreover, T n(x) assumes its ...
Chebyshev polynomials - Wikipedia
https://en.wikipedia.org/wiki/Chebyshev_polynomialsThat is, Chebyshev polynomials of even order have even symmetry and therefore contain only even powers of x. Chebyshev polynomials of odd order have odd symmetry and therefore contain only odd powers of x. A Chebyshev polynomial of either kind with degree n has n different simple roots, called Chebyshev roots, in the interval [−1, 1]. The roots of the Chebyshev polynomial of the first kind ar…
Chebyshev Polynomials - University of Waterloo
www.mhtl.uwaterloo.ca › courses › me755We observe that the Chebyshev polynomials form an orthogonal set on the interval 1 x 1 with the weighting function (1 x2) 1=2 Orthogonal Series of Chebyshev Polynomials An arbitrary function f(x) which is continuous and single-valued, de ned over the interval 1 x 1, can be expanded as a series of Chebyshev polynomials: f(x) = A 0T 0(x) + A 1T 1 ...