Cross entropy - Wikipedia
https://en.wikipedia.org/wiki/Cross_entropyCross-entropy can be used to define a loss function in machine learning and optimization. The true probability is the true label, and the given distribution is the predicted value of the current model. More specifically, consider logistic regression, which (among other things) can be used to classify observations into two possible classes (often simply labelled and ). The output of the model for a given observation, given a vector of input features , can be interpreted as a probability, which ser…
CrossEntropyLoss — PyTorch 1.10.1 documentation
pytorch.org › torchThe latter is useful for higher dimension inputs, such as computing cross entropy loss per-pixel for 2D images. The target that this criterion expects should contain either: Class indices in the range [ 0 , C − 1 ] [0, C-1] [ 0 , C − 1 ] where C C C is the number of classes; if ignore_index is specified, this loss also accepts this class ...
What Is Cross-Entropy Loss? | 365 Data Science
365datascience.com › cross-entropy-lossAug 26, 2021 · Cross-entropy loss refers to the contrast between two random variables; it measures them in order to extract the difference in the information they contain, showcasing the results. We use this type of loss function to calculate how accurate our machine learning or deep learning model is by defining the difference between the estimated ...