Semi-Supervised Classification with Graph Convolutional ...
https://arxiv.org/abs/1609.0290709.09.2016 · We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of …
Modeling Relational Data with Graph Convolutional Networks
https://arxiv.org/abs/1703.0610317.03.2017 · Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge …