Du lette etter:

pytorch functional

pytorch-functional · PyPI
https://pypi.org/project/pytorch-functional
The main difference between tensorflow functional API and pytorch_functional is how new layers are registered. In TensorFlow you apply layer on a placeholder node, like layer (placeholder) -> new_placeholder. In PyTorch you apply placeholder on a layer, like placeholder (layer) -> new_placeholder. They both return the resulting placeholder as ...
torch.nn.functional - PyTorch - W3cubDocs
https://docs.w3cub.com › pytorch
Convolution functions. conv1d. torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding ...
GitHub - gahaalt/pytorch-functional: Provides functional API ...
github.com › gahaalt › pytorch-functional
Functional API for model creation Model definition in PyTorch Advantages of Functional API More functional API examples: Quick Start Creating a functional model: Simple, linear topology example: Multiple inputs example (dummy model): To use a function on a symbolic variable...
pytorch-functional · PyPI
pypi.org › project › pytorch-functional
The main difference between tensorflow functional API and pytorch_functional is how new layers are registered. In TensorFlow you apply layer on a placeholder node, like layer (placeholder) -> new_placeholder. In PyTorch you apply placeholder on a layer, like placeholder (layer) -> new_placeholder. They both return the resulting placeholder as ...
pytorch/functional.py at master · pytorch/pytorch · GitHub
github.com › pytorch › pytorch
Jan 07, 2022 · Tensors and Dynamic neural networks in Python with strong GPU acceleration - pytorch/functional.py at master · pytorch/pytorch
pytorch/functional.py at master · pytorch/pytorch · GitHub
https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py
07.01.2022 · Tensors and Dynamic neural networks in Python with strong GPU acceleration - pytorch/functional.py at master · pytorch/pytorch
Function torch::nn::functional::relu - PyTorch
https://pytorch.org › cppdocs › api
Function Documentation. Tensor torch::nn::functional :: relu (Tensor input, const ReLUFuncOptions &options = {}).
torch.nn.functional.pad — PyTorch 1.10.1 documentation
pytorch.org › torch
torch.nn.functional.pad. Pads tensor. The padding size by which to pad some dimensions of input are described starting from the last dimension and moving forward. ⌋ dimensions of input will be padded. For example, to pad only the last dimension of the input tensor, then pad has the form. \text {padding\_front}, \text {padding\_back}) padding ...
torch.nn.functional.l1_loss — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
torch.nn.functional. l1_loss (input, target, size_average=None, reduce=None, reduction='mean') → Tensor[source]. Function that takes the mean element-wise ...
torch.nn.functional.fold — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/generated/torch.nn.functional.fold.html
Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) ... torch.nn.functional. fold (input, ...
pytorch/functional.py at master - GitHub
https://github.com › pytorch › blob › master › torch › f...
Tensors and Dynamic neural networks in Python with strong GPU acceleration - pytorch/functional.py at master · pytorch/pytorch.
torch.nn.functional.cosine_similarity — PyTorch 1.10.1 ...
https://pytorch.org/docs/stable/generated/torch.nn.functional.cosine...
torch.nn.functional.cosine_similarity. Returns cosine similarity between x1 and x2, computed along dim. x1 and x2 must be broadcastable to a common shape. dim refers to the dimension in this common shape. Dimension dim of the output is squeezed (see torch.squeeze () ), resulting in the output tensor having 1 fewer dimension.
torch.nn.functional.conv2d — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
torch.nn.functional.conv2d ... Applies a 2D convolution over an input image composed of several input planes. This operator supports TensorFloat32. See Conv2d for ...
torch.nn.functional — PyTorch 1.10.1 documentation
https://pytorch.org › docs › stable
functional. Convolution functions. conv1d. Applies a 1D convolution over an input signal composed ...
torch.nn.functional — PyTorch 1.10.1 documentation
pytorch.org › docs › stable
conv_transpose3d. Applies a 3D transposed convolution operator over an input image composed of several input planes, sometimes also called “deconvolution”. unfold. Extracts sliding local blocks from a batched input tensor. fold. Combines an array of sliding local blocks into a large containing tensor.
torch.nn.functional.linear — PyTorch 1.10.1 documentation
pytorch.org › torch
torch.nn.functional.linear¶ torch.nn.functional. linear (input, weight, bias = None) [source] ¶ Applies a linear transformation to the incoming data: y = x A T + b y = xA^T + b y = x A T + b. This operator supports TensorFloat32. Shape:
torch.nn — PyTorch 1.10.1 documentation
https://pytorch.org › docs › stable
Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output Tensor lie in the range [0,1] and ...
torch.nn.functional — PyTorch 1.10.1 documentation
https://pytorch.org/docs/stable/nn.functional.html
conv_transpose3d. Applies a 3D transposed convolution operator over an input image composed of several input planes, sometimes also called “deconvolution”. unfold. Extracts sliding local blocks from a batched input tensor. fold. Combines an array of sliding local blocks into a large containing tensor.
torch.autograd.functional.jacobian — PyTorch 1.10.1 ...
https://pytorch.org/docs/stable/generated/torch.autograd.functional...
torch.autograd.functional.jacobian. Function that computes the Jacobian of a given function. func ( function) – a Python function that takes Tensor inputs and returns a tuple of Tensors or a Tensor. inputs ( tuple of Tensors or Tensor) – inputs to the function func. create_graph ( bool, optional) – If True, the Jacobian will be computed ...
torch.nn.functional.hardtanh — PyTorch 1.10.1 documentation
https://pytorch.org › generated › to...
torch.nn.functional. hardtanh (input, min_val=- 1., max_val=1., inplace=False) → Tensor[source]. Applies the HardTanh function element-wise.
pytorch/_functional.py at master · pytorch/pytorch · GitHub
github.com › pytorch › pytorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode characters. r"""Functional API that performs Adagrad algorithm computation.
torch.functional — PyTorch master documentation
http://man.hubwiz.com › _modules
Source code for torch.functional. import torch import torch.nn.functional as F from torch._six import inf from operator import mul from functools import ...