BCEWithLogitsLoss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableThis loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability. The unreduced (i.e. with reduction set to 'none') loss can be described as:
BCELoss — PyTorch 1.10.1 documentation
pytorch.org › docs › stableOur solution is that BCELoss clamps its log function outputs to be greater than or equal to -100. This way, we can always have a finite loss value and a linear backward method. weight ( Tensor, optional) – a manual rescaling weight given to the loss of each batch element. If given, has to be a Tensor of size nbatch.
LogSigmoid — PyTorch 1.10.1 documentation
pytorch.org › generated › torchLearn about PyTorch’s features and capabilities. Community. Join the PyTorch developer community to contribute, learn, and get your questions answered. Developer Resources. Find resources and get questions answered. Forums. A place to discuss PyTorch code, issues, install, research. Models (Beta) Discover, publish, and reuse pre-trained models