The PyTorch Softmax Function - Sparrow Computing
https://sparrow.dev/pytorch-softmax29.01.2021 · The easiest way to use this activation function in PyTorch is to call the top-level torch.softmax () function. Here’s an example: import torch x = torch.randn (2, 3, 4) y = torch.softmax (x, dim=-1) The dim argument is required unless your input tensor is a vector. It specifies the axis along which to apply the softmax activation.
torch.nn.functional.softmax — PyTorch 1.10.1 documentation
pytorch.org › torchtorch.nn.functional.softmax. Applies a softmax function. It is applied to all slices along dim, and will re-scale them so that the elements lie in the range [0, 1] and sum to 1. See Softmax for more details. dim ( int) – A dimension along which softmax will be computed. dtype ( torch.dtype, optional) – the desired data type of returned tensor.
torch.nn.functional.log_softmax — PyTorch 1.10.1 documentation
pytorch.org › torchtorch.nn.functional.log_softmax(input, dim=None, _stacklevel=3, dtype=None) [source] Applies a softmax followed by a logarithm. While mathematically equivalent to log (softmax (x)), doing these two operations separately is slower and numerically unstable. This function uses an alternative formulation to compute the output and gradient correctly.